
Applied Mathematical Modelling 36 (2012) 1347–1358
Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
Recursive state estimation for hybrid systems

Evgenia Suzdaleva a,⇑, Ivan Nagy b

a Department of Adaptive Systems, Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 18208 Prague, Czech Republic
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The paper deals with recursive state estimation for hybrid systems. An unobservable state
of such systems is changed both in a continuous and a discrete way. Fast and efficient
online estimation of hybrid system state is desired in many application areas. The pre-
sented paper proposes to look at this problem via Bayesian filtering in the factorized
(decomposed) form. General recursive solution is proposed as the probability density func-
tion, updated entry-wise. The paper summarizes general factorized filter specialized for (i)
normal state-space models; (ii) multinomial state-space models with discrete observa-
tions; and (iii) hybrid systems. Illustrative experiments and comparison with one of the
counterparts are provided.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Systems whose state is changing dynamically continuously in time and also switching among several discrete values are
understood as hybrid systems. A state of a hybrid system is modeled by continuous variables within several discrete modes,
among them a system is switching. Usually system parameters are changing according to a particular mode. Hybrid systems
are widely used in many fields of signal processing (target tracking, medicine, speech recognition, traffic control etc.). Fast
and efficient online estimation of their state is desired in some of these areas.

A lot of works are devoted to state estimation of hybrid systems. One of the well-known approaches dealing with switch-
ing systems with Gaussian linear and discrete states is the interactive multiple model (IMM) algorithm [1]. It performs clas-
sical Kalman filter [2] for each mode under assumption that this particular mode is a right one at current time step. Then the
IMM algorithm computes a weighted combination of updated state estimates produced by all the filters yielding a final
Gaussian mean and covariance. This mixed state estimate is taken as the initial one for the next time step. The weights
are chosen according to the probabilities of the models, which are computed in filtering step of the algorithm.

The paper [3] proposes the exact filter for a specialized hybrid system state. The reference probability method for hidden
Markov models (HMM) is employed. The solution is presented as Gaussian sum with explicitly computed specific weights,
means and variances. However, a number of statistics grows geometrically in time, and provided results are restricted only
by 15 time steps. The approach [4] considers another special case of a dynamic linear state-space model with measurement
matrices switching according to time-varying independent random process. The updating of probabilities is derived as an
application of Bayes rule to the weighted observation model. The estimation of the normal state is shown as extension of
the classical Kalman filter with involved weighted combinations of the gain-adjusted innovations.

Iterative techniques for jump Markov linear systems are nicely presented in [5]. The algorithms are derived to obtain the
marginal maximum a posteriori sequence estimate of the finite state Markov chain. The paper [6] is concerned with optimal
. All rights reserved.
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filtering for hybrid systems with non-Gaussian noises. The derived filter is optimal in the sense of the most probable trajec-
tory (MPT) estimate. The state and the observation are considered as a pair of deterministic processes with switching coef-
ficient as a random process. Despite the claimed generality of solution, this can restrict application in practice. The paper [7]
proposes mixture Kalman filter based on a special sequential Monte Carlo method using a random mixture of Gaussian dis-
tributions for approximation of target posterior distribution. The approach deals with conditional dynamic linear models
(CDLM) with mixed Gaussian noises defined via known indicator process. The weighted sample of the indicators is used
within the proposed effective filter. A series of other research in the field of nonlinear hybrid systems [8] and online real-
time state estimation [9] can be also found.

The presented paper is focused on modeling of system states as conditionally dependent entries of the state vector. Their
entry-wise recursive estimation is subsequently reached via factorization of the state-space model and prior distributions for
Bayesian filtering [10]. A part of the work dealing with estimation of discrete state is also closely related to algorithms based
on hidden Markov models (HMM) theory [11]. However, these algorithms run in offline mode supported by Monte Carlo
computations. Important features of the proposed theory are that:

� the algorithms used run in online mode,
� numerical procedures are applied only in that parts, which cannot be computed analytically. In this way the amount of

computations as well as the risk of collapsing is minimized,
� general probabilistic approach is universal for the distributions used,
� it opens a way to recursive estimation of discrete system modes dependent on evolution of continuous states. This is

planned for future research.

The paper is structured as follows. Necessary preliminaries are provided in Section 2. Section 3 presents general proba-
bilistic solution of the factorized form of Bayesian filtering. The paper summarizes general factorized filter specialized for (i)
normal state-space models in Section 4; (ii) multinomial state-space models with discrete-valued observations in Section 5
and (iii) hybrid systems in Section 6. Section 7 demonstrates examples with real data and comparison with the IMM filter.
Remarks in Section 8 close the paper. Derivations of the proposed formulas are provided in Appendix A.
2. Preliminaries

2.1. State-space model

The system is described by the state-space model in the form of the following conditional probability (density) functions
(p(d)fs) for simplicity denoted as pdfs within this paper
observation model f ðytjxt ;utÞ; ð1Þ
state evolution model f ðxtþ1jxt;utÞ; ð2Þ
where the system output yt and the control input ut are measured at discrete time moments t = {1, . . . ,T} � t⁄. In general, the
variables are column vectors such that yt = [y1;t, . . . ,yY;t]0,ut = [u1;t, . . . ,uU; t]0. The system state xt = [x1;t, . . . ,xX;t]0 is not directly
observed and has to be estimated in an online (recursive) mode.
2.2. Bayesian filtering

Bayesian filtering, estimating the system state, includes the following coupled formulas.

Data updating
f ðxt jDðtÞÞ ¼
f ðyt jxt; utÞf ðxt jDðt � 1ÞÞR

f ðyt jxt; utÞf ðxt jDðt � 1ÞÞdxt
/ f ðyt jxt ;utÞf ðxt jDðt � 1ÞÞ; ð3Þ
incorporates information contained in observations D(t) = (d1, . . . ,dt), where dt � (yt,ut). Relation (3) also comprises the nat-
ural conditions of control [12], according to those
f ðxt jut;Dðt � 1ÞÞ ¼ f ðxt jDðt � 1ÞÞ:

Time updating

f ðxtþ1jDðtÞÞ ¼
Z

f ðxtþ1jxt ;utÞf ðxtjDðtÞÞdxt ; ð4Þ

fulfills state prediction. The prior pdf f(x1jD(0)) which expresses the subjective prior knowledge on the system initial state
starts the recursions. Application of (3,4) to linear Gaussian state-space model provides Kalman filter [12].
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2.3. Chain rule

An operation intensively used throughout the paper is:

Chain rule
f ða; bjcÞ ¼ f ðajb; cÞf ðbjcÞ; ð5Þ
which decomposes the joint pdf f(a,bjc) into a product of conditional pdfs for any random variables a, b and c.
3. General solution in a factorized form

Bayesian filtering (3,4) is proposed to be done in one integration step, i.e.,
f ðxtþ1jDðtÞÞ /
Z

f ðxtþ1jxt ;utÞ f ðytjxt; utÞf ðxtjDðt � 1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/f ðxt jDðtÞÞ

8><>:
9>=>;dxt; ð6Þ
which is obtained by a trivial substitution of the state estimate updated by measurements (3) in the time updating (4).
A basic idea of the approach is to apply the chain rule (5) to models (1,2) and to (6). Afterwards, models (1,2) are factor-

ized as
f ðytjxt ;utÞ ¼
YY

j¼1

f ðyj;t jyðjþ1Þ:Y ;t; x1:X;t;u1:U;tÞ; ð7Þ

f ðxtþ1jxt;utÞ ¼
YX

i¼1

f ðxi;tþ1jxðiþ1Þ:X;tþ1; x1:X;t; u1:U;tÞ; ð8Þ
that is a product of factors that are conditional pdfs of corresponding distributions. A notation of the form x(i+1):X;t denotes a
sequence {xi+1;t,xi+2;t, . . . ,xX;t} for current time instant t, which is empty, when (i + 1) P X.

Substitution of (7,8) in (6) and application of the chain rule to the prior pdf f(xtjD(t � 1)) provide the following factorized
form of (6), i.e.,
YX

i¼1

f ðxi;tþ1jxðiþ1Þ:X;tþ1;DðtÞÞ /
Z YX

i¼1

f ðxi;tþ1jxðiþ1Þ:X;tþ1;x1:X;t;u1:U;tÞ
YY

j¼1

f ðyj;t jyðjþ1Þ:Y ;t;x1:X;t ;u1:U;tÞ
YX

i¼1

f ðxi;t jxðiþ1Þ:X;t ;Dðt�1ÞÞdxt;

ð9Þ
where integration is assumed to be done over xt = [x1;t, . . . ,xX;t]0. Formal factorization into the factors helps in designing the
resulting algorithms as all the factors are scalar pdfs of respective distributions.

4. Factorized filter for linear normal models

Let us apply the proposed factorized solution (9) to linear normal state-space model. In this field, the sequential Kalman
filter [13] can be found closely related to the proposed one. In contrast to the sequential filter, the factorized solution is not
restricted by a diagonal measurement covariance matrix (as well as the process one). This is a significant benefit of the ap-
proach, since full covariances contribute to a better quality of estimation of normally distributed state. Furthermore, factor-
ization of covariance matrices for Kalman filtering is often aimed at more computational stability via a lesser rank of the
matrix, e.g. the Square-Root and U-D Kalman filters [13]. The presented algorithm exploits matrix factorization for reaching
the entry-wise updating of state estimate.

The normal observation model (1) has the form
f ðytjut ; xtÞ � N yt
Cxt þ Hut|fflfflfflfflfflffl{zfflfflfflfflfflffl}

mean

; Rv

z}|{covariance
0@ 1A ¼ ð2pÞ�

Y
2 jRv j�

1
2 exp �1

2
½yt � Cxt � Hut �0R�1

v ½yt � Cxt � Hut�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qy

8><>:
9>=>;; ð10Þ
where Nð�Þ denotes normal distribution; C and H are parameters supposed to be known or estimated offline; Rv is a known
covariance matrix of the measurement Gaussian noise with zero mean; Qy denotes a quadratic form inside the exponent.
Similarly, the state evolution model (2) is
f ðxtþ1jut ; xtÞ � N xtþ1 ðAxt þ But ;RwÞ ¼ ð2pÞ�
X
2jRwj�

1
2 exp �1

2
½xtþ1 � Axt � But�0R�1

w ½xtþ1 � Axt � But�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qx

8><>:
9>=>;; ð11Þ
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where A and B are known parameters of appropriate dimensions; Rw is a known covariance matrix of the process Gaussian
noise with zero mean; and Qx is a quadratic form inside the exponent.

Application of recursion (9) to normal models (10,11) leads to a factorized version of Kalman filter. For normal distribu-
tion, the posterior state estimate preserves its form
YX

i¼1

f ðxi;tþ1jxðiþ1Þ:X;tþ1;DðtÞÞ; ð12Þ
for factors via LDL0 decomposition [10] of the precision (i.e., inverse covariance) matrices. Such a decomposition supposes L to
be a lower triangular matrix with unit diagonal, D to be a diagonal one and 0 denoting transposition. This type of matrix
decomposition is an analogue of factorization (7,8) via the chain rule for normal models (10,11).

The factorization of (10,11) can be clearly demonstrated via exploitation of the quadratic forms Qy and Qx. Let us firstly
factorize the observation model (10). Matrix Rv is inverted into a precision matrix and decomposed so that
R�1
v ¼ LvDvL0v : ð13Þ
The resulted quadratic form corresponding to normal distribution (10) is
Qy ¼ L0vyt � L0vHut|fflffl{zfflffl}
qt

� L0vC|{z}
A

xt

264
375
0

Dv L0vyt � qt �Axt
� �

; ð14Þ
which helps to express the jth output factor as scalar pdf
N yj;t
qj;t �

XY

k¼jþ1
Lv;kjyk;t þ

XX

l¼1
Ajlxl;t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mean value

;
1

Dv;jj

z}|{variance0BB@
1CCA; ð15Þ
where Lv ;kj; Ajl and Dv;jj are elements of matrices Lv ;A and Dv respectively.
Normal model (11) is factorized quite similarly via the following operations with matrix Rw and quadratic form Qx, i.e.,
R�1
w ¼ LwDwL0w; ð16Þ

Qx ¼ L0wxtþ1 � L0wBut|fflffl{zfflffl}
zt

� L0wA|{z}
N

xt

264
375
0

Dw L0wxtþ1 � zt � Nxt
� �

; ð17Þ
resulting into normal factor of the ith state
N xi;tþ1
zi;t �

XX

k¼iþ1

Lw;kixk;tþ1 þ
XX

l¼1

Nilxl;t ;
1

Dw;ii

 !
; ð18Þ
where Lw;ki, Nil and Dw;ii are elements of matrices Lw, N and Dw respectively.
The prior state distribution is chosen as the normal one with mean lt and covariance matrix Pt for t = 1. It is transformed

to a similar form as follows.
P�1
t ¼ LpjtDpjtL

0
pjt ; ð19Þ

Qpjt ¼ L0pjtxt � lf
t

h i0
Dpjt L0pjtxt � lf

t

h i
; where lf

t ¼ L0pjtlt ; ð20Þ
where Qpjt is a resulted quadratic form for the normal distribution of the initial state xt, which enables expressing the prior
factorized state estimate as
N xi;t
lf

i;t �
XX

k¼iþ1

Lpjt;kixk;t;
1

Dpjt;ii

 !
; ð21Þ
where Lpjt;ki and Dpjt;ii are elements of matrices Lpjt and Dpjt respectively.
Usage of the quadratic forms (14), (17) and (20) allows to represent an elegant form of solution (9) for normal models.

Substituting the factorized distributions in (9) and after all rearrangements, one obtains the posterior state estimate in
the preserved form (12), or precisely (21), for the ith factor, i.e.,
N xi;tþ1
lf

i;tþ1 �
XX

k¼iþ1

Lpjtþ1;kixk;tþ1;
1

Dpjtþ1;ii

 !
ð22Þ
for that it holds
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Q pjtþ1 ¼ L0ujtL
0
w|fflffl{zfflffl}

L0pjtþ1

xtþ1 � lf
tþ1

2664
3775
0

Dujt|{z}
Dpjtþ1

L0pjtþ1xtþ1 � lf
tþ1

h i
; ð23Þ

lf
tþ1 ¼ L0ujt zt þ eD�1

t DwNC�1
t A0Dv L0vyt � qt

� �
þ LpjtDpjtlf

t

� �� �� �
ð24Þ
and
Dw � DwNC�1
t N0Dw ¼ eDt ¼ LujtDujtL

0
ujt ; ð25Þ

Ct ¼ N;A; L0pjt
h i0

Xt N;A; L0pjt
h i

; ð26Þ

Xt ¼ diag½Dw;Dv ;Dpjt �: ð27Þ
Detailed derivations can be found in Appendix A.

4.1. Algorithm 1

The obtained results can now be summarized in the form of an algorithm.

Initial part of the algorithm
1. Load data yt, ut and parameters A, B, C, H, Rw and Rv.
2. Set prior values lt and Pt.
3. Factorize the observation model (10) according to (13) and obtain
qt ¼ L0vHut ;

A ¼ L0vC:
4. Factorize the state evolution model (11) according to (16) and compute
zt ¼ L0wBut ;

N ¼ L0wA:
5. Factorize the prior distribution according to (19,20) to obtain Lpjt, Dpjt and lf
t .

Online part of the algorithm
For time t from 1 to T

1. Make diagonal matrix Xt = diag[Dw,Dv,Dpjt].

2. Compute Ct ¼ N;A; L0pjt
h i0

Xt N;A; L0pjt
h i

:

3. Compute matrix eDt ¼ Dw � DwNC�1
t N0Dw.

4. Factorize matrix eDt ¼ LujtDujtL
0
ujt .

5. Compute the factorized state estimate (22) according to (23) and (24), i.e.,
lf
t ¼ L0ujt zt þ eD�1

t DwNC�1
t A0Dv L0vyt � qt

� �
þ LpjtDpjtlf

t

� �� �� �
;

L0pjt ¼ L0ujtL
0
w;

Dpjt ¼ Dujt :
End of the cycle for t.

5. Factorized filter for discrete models

Let us apply the proposed factorized solution (9) to discrete models with multinomial distribution. In this area the HMM
approaches are widely used. However, the presented online filter is based on explicit solution and avoids Monte Carlo com-
putations. Here factors are obtained naturally since multivariate discrete variables are reduced to scalars with finite number
of possible values.

The multinomial observation model (1), i.e.,
f ðytjxt ;utÞ ð28Þ
is provided by the output transition table and a known (or estimated offline) probability aqjl,n with multi-index qjl,n. This
multi-index denotes realizations q 2 {1, . . . ,Q} of random discrete variable yt at time instant t according to a set of its possible
values {1, . . . ,Q}, where Q is a finite number. Realization q in the multi-index qjl,n is conditioned by realizations l 2 {1, . . . ,L} of
discrete state xt and n 2 {1, . . . ,N} of discrete input ut from their sets of possible values with finite numbers L and N. Notation
aqjl,n reflects probability of transition of output yt to the discrete value q, i.e., yt = q conditioned by xt = l and ut = n. It holds
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XQ

q¼1

aqjl;n ¼ 1; and aqjl;n P 0 8q; l; n:
Similarly, the state evolution model (2)
f ðxtþ1jxt;utÞ; ð29Þ

is the multinomial distribution presented by the state transition table containing known probability bljm,n with a multi-index
ljm,n. Here the multi-index is evolved in a similar way as for the observation model but the condition m 2 {1, . . . ,L}, which
relates to value of the discrete state xt at time instant t, while l here belongs to xt+1. It holds
XL

l¼1

bljm;n ¼ 1; and bljm;n P 0 8l;m; n:
The prior distribution of the discrete state is chosen as the multinomial one
f ðxt jDðt � 1ÞÞ ¼ pxt
; ð30Þ
that has the form of a vector containing the initial probabilities pl "l 2 {1, . . . ,L} at time instant t, and it has to be recursively
estimated for time t + 1. It holds
XL

l¼1

pl ¼ 1; and pl P 0 8l:
Substituting models (28,29) in (9) (here precisely (6)) with incorporation of the prior distribution (30), one obtains the fol-
lowing expression, which simultaneously updates the estimate by actual measurements and predicts the state, i.e.,
f ðxtþ1jDðtÞÞ /
X

x�
f ðxtþ1jxt; utÞf ðyt jxt ;utÞf ðxt jDðt � 1ÞÞ; ð31Þ
where integration is replaced by regular summation. For each value l 2 {1, . . . ,L} of xt+1 and with discrete observations
yt = q 2 {1, . . . ,Q} and ut = n 2 {1, . . . ,N} available at time instant t the predicted probability pl for time instant t + 1 is explicitly
computed as
pl ¼ blj1naqj1np1 þ blj2naqj2np2 þ � � � þ bljLnaqjLnpL; ð32Þ
and then normalized, i.e.,
pl ¼
plPL
l¼1pl

;

resulting in the multinomial distribution
f ðxtþ1jDðtÞÞ ¼ pxtþ1
; ð33Þ
which preserves the original form (30) and can be used for the next step of recursive estimation.

6. Factorized filter for hybrid systems

Let us consider a hybrid system with the observed output yt ¼ yc
t ; y

d
t

� �0
with yc

t ¼ yc
1;t ; . . . ; yc

Y�1;t

h i
and yd

t ¼ yY;t , where

superscript c denotes a continuous type of a variable, while superscript d belongs to a discrete variable. Here the case both
with normally distributed and multinomial variables is considered. The control input is similarly ut ¼ uc

t ;u
d
t

� �0 ¼
uc

1;t ; . . . ;uc
U�1;t ;u

d
t

h i0
, and the unobserved state to be estimated is
xt ¼ xc
t ; x

d
t

� �0 ¼ xc
1;t ; . . . ; xc

X�1;t ; xX;t

h i0
; where xX;t ¼ xd

t :
Factorization of pdfs shown in (9) allows to represent it in the following way
YX�1

i¼1

f xc
i;tþ1jxðiþ1Þ:X;tþ1;DðtÞ

� �
f xd

tþ1jDðtÞ
� �

/
Z

xc�

X
xd�

YX�1

i¼1
f xc

i;tþ1jxðiþ1Þ:X;tþ1; xc
1:X�1;t ;u

c
t

� �
f xd

tþ1jxd
t ;u

d
t

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðxtþ1 jxt ;utÞ

�
YY�1

j¼1
f yc

j;tjyðjþ1Þ:Y ;t ; x
c
1:X�1;t ;u

c
t

� �
f yd

t jxd
t ; u

d
t

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðyt jxt ;utÞ

�
YX�1

i¼1
f xc

i;t jxðiþ1Þ:X;t;Dðt � 1Þ
� �

f xd
t jDðt � 1Þ

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
prior pdf

;dxc
t

ð34Þ
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with assumptions that continuous entries can be omitted from the condition for discrete state and output, and the past dis-
crete state and a discrete input – from the condition for yc

t , as well as ud
t for xc

tþ1. Using relations (3,4), (6) and (31), one can see
that the prescribed original form of the posterior pdf is destroyed in (34): it is a sum of distributions
X

xd�

f xd
tþ1jDðtÞ

� �YX�1

i¼1

f xc
i;tþ1jxðiþ1Þ:X;tþ1;DðtÞ

� �
: ð35Þ
It is necessary to restore the original form to use it for the next step of estimation. An approximation based on Kerridge inac-
curacy [14] is an explicit solution, which restores the original form of the pdf via computation of a specific weighted com-
bination of the pdfs involved in (35). Kerridge inaccuracy is a part of Kullback–Leibler divergence [15] adopted as a
theoretically justified proximity measure. This divergence is known to be an optimal tool within the Bayesian approach
[10]. For any random variable a, Kerridge inaccuracy is used to measure the proximity of pdfs f(a) and f̂ ðaÞ
Kaðf ðaÞkf̂ ðaÞÞ ¼
Z

a�
f ðaÞ ln 1

f̂ ðaÞ
da; ð36Þ
and its minimization allows to find the approximated pdf f̂ ðaÞ. According to this approximation [10], the original form of pdf
is restored and the product
YX�1

i¼1

f̂ xc
i;tþ1jxðiþ1Þ:X;tþ1;DðtÞ

� �
f xd

tþ1jDðtÞ
� �

; ð37Þ
is used as the prior pdf for the next step of recursive estimation (34).
Let us apply the presented solution for the system with normal factors provided by (15), (18) and (21) and discrete factors

from (28)–(30).
Solution (34) related to normal factors coincides with that proposed in Section 4 running for each value l of discrete state.

A part of (34) outside the integral corresponds to discrete factors and is explained in Section 5.
Relation (35) in this case is the mixture distribution
XL

l¼1

pl

YX�1

i¼1

N xi;tþ1
lf

i;tþ1 �
XX�1

k¼iþ1

Lpjtþ1;kixc
k;tþ1;

1
Dpjtþ1;ii
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Fig. 1. Queue length estimation with the proposed filter.
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Restoring the original normal form needs to use the approximation based on Kerrigde inaccuracy [14]. According to [10], for
the case of normal pdfs the Kerridge inaccuracy (36) is minimized with the following mean and covariance matrix of the
approximated distribution
l̂tþ1 ¼
XL

l¼1

plll;tþ1; where ll;tþ1 ¼ L0lðpjtþ1Þ

� ��1
lf

lðtþ1Þ; ð38Þ

bPtþ1 ¼
XL

l¼1

plPl;tþ1 þ
XL

l¼1

plðl̂tþ1 � ll;tþ1Þ
2
; ð39Þ
where
Pl;tþ1 ¼ Llðpjtþ1ÞDlðpjtþ1ÞL
0
lðpjtþ1Þ

� ��1
;

where subscript l denotes results obtained for each value l of discrete state. The approximation (38) is then factorized accord-
ing to (19,20) and used as the prior normal distribution for the next step of the recursion.

To summarize the obtained solution, one can structure it as follows.

1. Compute the state estimate for discrete factors, see Section 5.
2. Compute the normal state estimates, see Section 4.1, running the algorithm for each discrete state value.
3. Restore the original form via (38) and factorize it.

Note that the above specialization is shown for vector
xt ¼ xc
1;t; . . . ; xc

X�1;t; xX;t

h i0
;

where xX;t ¼ xd
t . For another case, for instance, xc

1;t ; . . . ; xX�1;t ; xc
X;t

h i0
with xX�1;t ¼ xd

t and xc
X;t one should use distributions mod-

eling discrete variables dependent on continuous ones. The proposed factorization enables to consider this task that will be
presented soon.
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Fig. 2. Queue length estimation with the IMM filter.
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7. Experiments

To test the proposed approach, a real data sample containing intensity (number of cars per time unit) of the traffic flow in
a chosen point of traffic communications in Prague has been taken. In practice in the field of traffic-flow control, fast online
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Fig. 3. LoS estimation with the proposed filter.
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Table 1
Estimation error and correct point estimates.

EE CPE

Factorized filter 0.0296 240
IMM filter 5.5762 70
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state estimation is important: it can influence the adaptive control of the microregion via adequate green light time. A nor-
mally distributed state xc

t of the considered hybrid system is a four-dimensional queue length of cars waiting for passing
through a traffic microregion. A full dimension of the taken normal state is eight, since occupancy of a measured detector
is added to the vector to ensure observability of the model. A discrete state xd

t is a level of service (LoS) of the microregion.
It expresses a degree of traffic saturation in that sense how easy cars can pass through the microregion with 4 possible val-
ues: from 1 (the best) to 4 (the worst).

The measured data used were: yc
t – car outgoing intensity along with occupancy of a measured detector; yd

t – a time mode
of a workday (morning peak-hour time, lunch, late afternoon peak-hour time, evening); uc

t – a relative time of the green
light; ud

t – a discrete variable, reflecting whether the saturated strategy of the adaptive control is used or not. A duration
of the online filtering was 1 workday, which corresponds to 288 time periods. The filtering started at midnight that simplifies
a choice of prior distributions (i.e., zero queue length and LoS = 1).

The state estimation was performed via the presented approach and, to compare, with the help of the IMM filter imple-
mented in toolbox [16]. Comparison of these filters provided the following results.

Significant difference between these methods is that the proposed one considers the probabilistic state-space model in a
general form both for the normal and the discrete states and takes into account hybrid observations and control inputs. The
discrete state estimation in the IMM filter is based mostly on the state transition table, i.e., other discrete variables bringing
some information are not taken into account. This caused a worsened stability of the IMM filter during the testing.

Results of the online queue length estimation for four arms of the considered traffic microregion (here an intersection) are
shown in Figs. 1, 2, where the first figure corresponds to the proposed hybrid filter, and the second figure – to the IMM filter.
The LoS estimation for both the filters is demonstrated in Figs. 3, 4. The estimation error (EE) computed as
EE ¼ 1
T

X
t

xc
t � ltþ1

� �0 xc
t � ltþ1

� �
;

where T = 288 is the duration of the estimation and xc
t is the state identified with the real one, is provided in Table 1 for both

the methods. A number of correctly point-estimated states (CPE) from the total 288-data sample was evaluated for both the
filters and shown in Table 1. It is assumed that for better quality of estimation, EE should have a minimal value, and CPE on
the contrary – a maximal (from 288) value. An advantage of the factorized hybrid filter is rather significant.

It should be also noted that both the output and the state transition tables used for the factorized filter were given as
rather uncertain models. However, usage of more deterministic transition table for the IMM filter does not improve its
results.
8. Conclusion

The paper is devoted to recursive state estimation that can be applied to hybrid systems. The proposed solution is based
on the factorized form of Bayesian filtering. The paper summarizes application of general factorized filter to normal, discrete
and hybrid models. The presented algorithms run in online mode avoiding numerical procedures as far possible. A number of
statistics does not grow in time and the risk of collapsing is minimized. An important contribution is that the presented ap-
proach can be evolved for recursive estimation of discrete modes dependent on evolution of continuous states. The proposed
method demonstrates better stability and quality of estimation in comparison with the IMM filter.

Acknowledgements

The research was supported by projects MŠMT 1M0572 and TAČR TA01030123.

Appendix A. Derivations for normal models

Substituting the factorized normal distributions with quadratic forms (14), (17) and (20) into (9), one obtains the follow-
ing function to be integrated
Z
exp �1

2
½Qx þ Qy þ Qpjt �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qe

8><>:
9>=>;dxt; ðA:1Þ



E. Suzdaleva, I. Nagy / Applied Mathematical Modelling 36 (2012) 1347–1358 1357
where to facilitate algebraic rearrangements, the following additional notations in the quadratic form Qe appear, i.e.,
Q e ¼ L0wxtþ1 � zt|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b1

�Nxt

264
375
0

Dw L0wxtþ1 � zt � Nxt
� �

þ L0vyt � qt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
b2

�Axt

264
375
0

Dv L0vyt � qt �Axt
� �

þ lf
t|{z}

b3

�L0pjtxt

264
375
0

Dpjt lf
t � L0pjtxt

h i
; ðA:2Þ
where b1, b2, b3 and b = [b1;b2; b3] are column vectors. To have the variable xt in (A.1) integrated out, one has to fulfill the
completion of squares [12] in (A.2) for xt. After that and subsequent integration of non-normalized Gaussian pdf [17], the
variable xt is being integrated out. The computational result of the filtering (A.1) is proportional to exp � 1

2 k
	 


with the fol-
lowing remainder k obtained after integration
k ¼ b0 Xt �Xt N;A; L0pjt
h i

C�1
t N;A; L0pjt
h i0

Xt

� �
b; ðA:3Þ

where Xt ¼ diag½Dw;Dv ;Dpjt�; ðA:4Þ

Ct ¼ N;A; L0pjt
h i0

Xt N;A; L0pjt
h i

: ðA:5Þ
With the help of algebraic rearrangement of the remainder (A.3) using completion of squares for xt+1, one obtains the follow-
ing quadratic form
L0wxtþ1 � zt � eD�1
t DwNC�1

t A0Dv L0vyt � qt

� �
þ LpjtDpjtlf

t

� �� �h i0 eDt

� L0wxtþ1 � zt � eD�1
t DwNC�1

t A0Dv L0vyt � qt

� �
þ LpjtDpjtlf

t

� �� �h i
; ðA:6Þ
where
eDt ¼ Dw � DwNC�1
t N0Dw: ðA:7Þ
The matrix eDt , obtained in (A.7) is decomposed so that
eDt ¼ LujtDujtL
0
ujt : ðA:8Þ
The decomposition (A.8) and factorization of the quadratic form (A.6) (i.e., its multiplication by triangular matrix Lujt) enable
to preserve the prior form (20) and obtain the following result
Q pjtþ1 ¼ L0ujtL
0
w|fflffl{zfflffl}

L0pjtþ1

xtþ1 � lf
tþ1

2664
3775
0

Dujt|{z}
Dpjtþ1

L0pjtþ1xtþ1 � lf
tþ1

h i
; ðA:9Þ
where
lf
tþ1 ¼ L0ujt zt þ eD�1

t DwNC�1
t A0Dv L0vyt � qt

� �
þ LpjtDpjtlf

t

� �� �� �
: ðA:10Þ
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